# Beautiful proofs (#1) : Divergence of the harmonic series

The harmonic series are as follows:

$\sum\limits_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \hdots$

And it has been known since as early as 1350 that this series diverges. Oresme’s proof to it is just so beautiful.

$S_1 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \hdots$

$S_1 = 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \right) \hdots$

Now replace ever term in the bracket with the lowest term that is present in it. This will give a lower bound on $S_1$.

$S_1 > 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} \right) \hdots$

$S_1 > 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) + \hdots$

Clearly the lower bound of $S_1$ diverges and therefore $S_1$ also diverges. 😀
But it interesting to note that of divergence is incredibly small: 10 billion terms in the series only adds up to around 23.6 !