Beautiful proofs (#1) : Divergence of the harmonic series

The harmonic series are as follows:

\sum\limits_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \hdots

And it has been known since as early as 1350 that this series diverges. Oresme’s proof to it is just so beautiful.

S_1 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \hdots

S_1 = 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} +  \frac{1}{7} + \frac{1}{8} \right) \hdots

Now replace ever term in the bracket with the lowest term that is present in it. This will give a lower bound on S_1 .

S_1 > 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} +  \frac{1}{8} + \frac{1}{8} \right) \hdots

S_1 > 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)  + \left(\frac{1}{2}\right)  + \hdots

Clearly the lower bound of S_1 diverges and therefore S_1 also diverges. 😀
But it interesting to note that of divergence is incredibly small: 10 billion terms in the series only adds up to around 23.6 !

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s