Legendre Differential Equation(#2): A friendly introduction

Now there is something about the Legendre differential equation that drove me crazy. What is up with the l(l+1) !!!

(1-x^2)y^{''} -2xy^{'} + l(l+1)y = 0

To understand why let’s take this form of the LDE and arrive at the above:

(1-x^2)y^{''} -2xy^{'} + \lambda y = 0

y = \sum\limits_{n=0}^{\infty} a_n x^n

If we do a power series expansion and following the same steps as the previous post, we end up with the following recursion relation.

(n+2)(n+1)a_{n+2} = (\lambda -n(n+1))a_n

or

a_{n+2} = a_n \frac{\lambda - n(n+1)}{(n+1)(n+2)}

Here’s the deal: We want a convergent solution for our differential solution. This means that as n \rightarrow l , a_{n+2} \rightarrow 0.

Hence we obtain that

\lambda = l(l+1)

Advertisement

One thought on “Legendre Differential Equation(#2): A friendly introduction

  1. Pingback: Laplacian in Spherical Coordinates (#1) – Ecstasy Shots

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s