# Beautiful proofs(#2): Euler’s Sum

$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \hdots = \frac{\pi^2}{6}$

Say what? This one blew my mind when I first encountered it. But it turns out Euler was the one who came up with it and it’s proof is just beautiful!

Prerequisite
Say you have a quadratic equation $f(x)$ whose roots are $r_1,r_2$, then you can write $f(x)$ as follows:

$f(x) = x^2 - (r_1 + r_2) x + r_1r_2$

You can also divide throughout by $r_1r_2$ and arrive at this form:

$f(x) = r_1r_2 \left( \frac{x^2}{r_1r_2} - (\frac{1}{r_1} + \frac{1}{r_2}) x + 1 \right)$

As for as this proof is concerned we are only worried about the coefficient of x, which you can prove that for a n-degree polynomial is:

$a_1 = - (\frac{1}{r_1} + \frac{1}{r_2} + \hdots + + \frac{1}{r_n})$

where $r_1,r_2 \hdots r_n$ are the n-roots of the polynomial.

Now begins the proof

It was known to Euler that

$f(y) = \frac{sin(\sqrt{y})}{\sqrt{y}} = 1 - \frac{1}{3!}y + \hdots$

But this could also be written in terms of the roots of the equation as:

$f(y) = \frac{sin(\sqrt{y})}{\sqrt{y}} = 1 - (\frac{1}{r_1} + \frac{1}{r_2} + \hdots + + \frac{1}{r_n})y + \hdots$

Now what are the roots of $f(y)$ ?. Well, $f(y) = 0$ when $\sqrt{y} = n \pi$ i.e $y = n^2 \pi^2$ *

The roots of the equation are $y = \pi^2, 4 \pi^2, 9 \pi^2, \hdots$

Therefore,

$f(y) = \frac{sin(\sqrt{y})}{\sqrt{y}} = 1 - \frac{1}{3!}y + \hdots = 1 -( \frac{1}{\pi^2} + \frac{1}{4 \pi^2} + \hdots )y + \hdots$

Equating the coefficient of y on both sides of the equation we get that:

$\frac{1}{6} = \frac{1}{\pi^2} + \frac{1}{4 \pi^2} + \frac{1}{ 9 \pi^2} + \hdots$

$\frac{\pi^2}{6} = 1 + \frac{1}{4} + \frac{1}{9} + \hdots = S_2$

Q.E.D

* n=0 is not a root since
$\frac{sin(\sqrt{y})}{\sqrt{y}} = 1$ at y = 0