# A strange operator

In a previous post on using the Feynman’s trick for Discrete calculus, I used a very strange operator ( $\triangledown$ ). And whose function is the following :

$\triangledown n^{\underline{k}} = \frac{n^{\underline{k+1}}}{k+1}$

What is this operator? Well, to be quite frank I am not sure of the name, but I used it as an analogy to Integration. i.e

$\int x^{n} = \frac{x^{n+1}}{n+1} + C$

What are the properties of this operator ? Let’s use the known fact that $n^{\underline{k+1}} = (n-k) n^{\underline{k}}$

$\triangledown n^{\underline{k}} = \frac{n^{\underline{k+1}}}{k+1}$

$\triangledown n^{\underline{k}} = \frac{(n-k) n^{\underline{k}}}{k+1}$

And applying the operator twice yields:

$\triangledown^2 n^{\underline{k}} = \frac{n^{\underline{k+2}}}{(k+1)(k+2)}$

$\triangledown^2 n^{\underline{k}} = \frac{(n-k-1) n^{\underline{k+1}}}{(k+1)(k+2)}$

$\triangledown^2 n^{\underline{k}} = \frac{(n-k-1)(n-k) n^{\underline{k}}}{(k+1)(k+2)}$

We can clearly see a pattern emerging from this already, applying the operator once more :

$\triangledown^3 n^{\underline{k}} = \frac{(n-k-2)(n-k-1)(n-k) n^{\underline{k}}}{(k+1)(k+2)(k+3)}$

$\vdots$

Or in general, the operator that has the characteristic prescribed in the previous post is the following:

$\triangledown^m n^{\underline{k}} = \frac{n^{\underline{k+m}}}{(k+m)^{\underline{m}}} n^{\underline{k}}$

If you guys are aware of the name of this operator, do ping me !