How to visualize Flux ?

Sometime ago I was asked how to visualize Flux in the context of Gauss law.

\int\int_{S} {\bf E. \vec{n}} dS  = \frac{q}{\epsilon}

I believe one of the primary reasons why people get thrown away by this idea of flux is due to that double integral sign. And when explained what that integral meant, a lot of people felt at ease.

What is Flux ?

Flux is a measure of how much stuff is entering or leaving a surface.

What does the Integral mean ?

\int\int_{S} {\bf E. \vec{n}} dS 

Why is the above integral a representation of Flux?

To understand why let’s take the example where you know the electric field and want to find the flux across a sphere. How would you go about finding that ?

Well lets start with a cube and wrap it around the charge and calculate the stuff coming in and out of each surface of this cube. This won’t give the actual value but an approximate.

cube.GIF

Flux \approx Flux_{face-1} + Flux_{face-2} + \hdots + Flux_{face-6}

Flux \approx E_{1} \Delta S + E_{2} \Delta S + \hdots + E_{6} \Delta S

Flux \approx \sum\limits_{i=1}^{6} {\bf E.\vec{n}} \Delta S

where \Delta S is the area of the surface.

 

Vol 0, No 0

Now to find a better approximate, you can move from a cube to higher dimensions. And as a result we will get better and better approximates for the Flux.

Flux \approx \sum\limits_{i=1}^{N} {\bf E.\vec{n}} \Delta S

where N is the number of surface elements.

But is imperial to note that as we increase the number of surface elements, the surface area must also decrease for better approximation.

59076-spheres

And this approximation for the flux becomes the actual value when the area of the surface elements tends to 0 i.e

Flux  = \sum\limits_{i=1}^{N} {\bf E.\vec{n}} \Delta S as \Delta S \to 0 N \to \infty

This is what is written out as an Integral as :

Flux = \int\int_{S} {\bf E. \vec{n}} dS 

Now although in this post we have laid emphasis on the surface being a sphere, in theory it can be closed or even open. This analysis would be valid at all times.

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s