Using Complex numbers in Classical Mechanics

When one is solving problems on the two dimensional plane and you are using polar coordinates, it is always a challenge to remember what the velocity/acceleration in the radial and angular directions (v_r , v_{\theta}, a_r, a_{\theta} ) are. Here’s one failsafe way using complex numbers that made things really easy :

z = re^{i \theta}

\dot{z} = \dot{r}e^{i \theta} + ir\dot{\theta}e^{i \theta} = (\dot{r} + ir\dot{\theta} ) e^{i \theta}

From the above expression, we can obtain v_r = \dot{r} and v_{\theta} = r\dot{\theta}

\ddot{z} =  (\ddot{r} + ir\ddot{\theta} + i\dot{r}\dot{\theta} ) e^{i \theta}   + (\dot{r} + ir\dot{\theta} )i \dot{\theta} e^{i \theta} 

\ddot{z} =  (\ddot{r} + ir\ddot{\theta} + i\dot{r}\dot{\theta}  + i  \dot{r} \dot{\theta} - r\dot{\theta}\dot{\theta} )e^{i \theta} 

\ddot{z} =  (\ddot{r} - r(\dot{\theta})^2+ i(r\ddot{\theta} + 2\dot{r}\dot{\theta} ) )e^{i \theta} 

From this we can obtain a_r = \ddot{r} - r(\dot{\theta})^2 and a_{\theta} = (r\ddot{\theta} + 2\dot{r}\dot{\theta}) with absolute ease.

Something that I realized only after a mechanics course in college was done and dusted but nevertheless a really cool and interesting place where complex numbers come in handy!

 

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s