Fibonacci sequence in the hiding


What ?!! There exists such an elegant decimal representation of the Fibonacci sequence? Well yes! and the only thing that you need to know to prove this is that if the Fibonacci numbers were the coefficients to a power series expansion, then the Fibonacci generating function is given as follows:

1x + 1x^{2} + 2x^{3} + 3x^{4} + 5x^{5} + \hdots = \frac{x}{1-x-x^{2}}

Subsituting the value of x  = \frac{1}{10} , we get :

\frac{1}{10} + \frac{1}{10}^{2} + 2(\frac{1}{10})^{3} + 3(\frac{1}{10})^{4} + 5(\frac{1}{10})^{5} + \hdots = \frac{\frac{1}{10}}{1-\frac{1}{10}-\frac{1}{10}^{2}}

0.1 + 0.01 + 0.002 + 0.0003 + 0.00005 + \hdots = \frac{10}{89}  

0.01 + 0.001 + 0.0002 + 0.00003 + 0.000005 + \hdots = \frac{1}{89}  

Proved. 😀



Prof.Ghrist at his best!

Screenshot from 2017-07-28 10:55:27

To understand why this is true, we must start with the Fundamental Theorem of Vector calculus. If F  is a conservative field ( i.e F = \nabla \phi  ), then

\int\limits_{A}^{B} F.dr = \int\limits_{A}^{B} \nabla\phi .dr = \phi_{A} - \phi_{B}

What this means is that the value is dependent only on the initial and final positions. The path that you take to get from A to B is not important.

Screenshot from 2017-07-28 11:29:46

Now if the path of integration is a closed loop, then points A and B are the same, and therefore:

\int\limits_{A}^{A} F.dr = \int\limits_{A}^{A} \nabla\phi .dr = \phi_{1} - \phi_{1} = 0

Now that we are clear about this, according to Stokes theorem the same integral for a closed region can be represented in another form:

\int_{C} F.dr = \int\int_{A} (\nabla X F) .\vec{n} dA  = 0

From this we get that Curl = \nabla X F = 0 for a conservative field (i.e F = \nabla \phi ). Therefore when a conservative field is operated on by a curl operator (\nabla X ), it yields 0.

Bravo Prof.Ghrist! Beautifully said 😀


Beautiful Proofs(#3): Area under a sine curve !

So, I read this post on the the area of the sine curve some time ago and in the bottom was this equally amazing comment :

Screenshot from 2017-06-07 00:19:11

\sum sin(\theta)d\theta =   Diameter of the circle/ The distance covered along the x axis starting from 0 and ending up at \pi.

And therefore by the same logic, it is extremely intuitive to see why:

\int\limits_{0}^{2\pi} sin/cos(x) dx = 0

Because if a dude starts at 0 and ends at 0/ 2\pi/ 4\pi \hdots, the effective distance that he covers is 0.


If you still have trouble understanding, follow the blue point in the above gif and hopefully things become clearer.


Tricks that I wish I knew in High School : Trigonometry (#1)

I really wish that in High School the math curriculum would dig a little deeper into Complex Numbers because frankly Algebra in the Real Domain is not that elegant as it is in the Complex Domain.

To illustrate this let’s consider this dreaded formula that is often asked to be proved/ used in some other problems:

cos(nx)cos(mx) =  ?

Now in the complex domain:

cos(x) = \frac{e^{ix} + e^{-ix}}{2}

And therefore:

cos(mx) = \frac{e^{imx} + e^{-imx}}{2}

cos(nx) = \frac{e^{inx} + e^{-inx}}{2}

cos(mx)cos(nx)  = \left( \frac{e^{imx} + e^{-imx}}{2} \right) \left(  \frac{e^{inx} + e^{-inx}}{2} \right)

cos(mx)cos(nx)  = \frac{1}{4} \left( e^{i(m+n)x} + e^{-i(m+n)x} + e^{i(m-n)x} + e^{-i(m-n)x}   \right)

cos(mx)cos(nx)  = \frac{1}{2} \left( \left( \frac{e^{i(m+n)x} + e^{-i(m+n)x}}{2} \right) + \left( \frac{e^{i(m-n)x} + e^{-i(m-n)x}}{2} \right)   \right)

cos(mx)cos(nx)  = \frac{1}{2} \left( cos(m+n)x + cos(m-n)x   \right)
And similarly for its variants like cos(mx)sin(nx) and sin(mx)sin(nx) as well.


Now if you are in High School, that’s probably all that you will see. But if you have college friends and you took a peak what they rambled about in their notebooks, then you might this expression (for m \neq n):

I =  \int\limits_{-\pi}^{\pi} cos(mx)cos(nx) dx \\

But you as a high schooler already know a formula for this expression:

I =  \int\limits_{-\pi}^{\pi} \left( cos(m+n)x + cos(m-n)x   \right)dx \\

I =  \int\limits_{-\pi}^{\pi} cos(\lambda_1 x) dx + \int\limits_{-\pi}^{\pi} cos(\lambda_2 x) dx \\ 

where \lambda_1, \lambda_2 are merely some numbers. Now you plot some of these values for lambda i.e (\lambda = 1,2, \hdots) and notice that since integration is the area under the curve, the areas cancel out for any real number. drawing.png

and so on….. Therefore:

I =  \int\limits_{-\pi}^{\pi} cos(mx)cos(nx)dx = 0

This is an important result from the view point of Fourier Series!

Why is the area under one hump of a sine curve exactly 2?

Girls' Angle


I was talking with a student recently who told me that he always found the fact that $latex int_0^{pi} sin x , dx = 2$ amazing. “How is it that the area under one hump of the sine curve comes out exactly 2?” He asked me if there is an easy way to see that, or is it something you just have to discover by doing the computation.

If you’ve wondered about this too, perhaps you’ll find the following of interest.

View original post 162 more words

Beautiful proofs(#2): Euler’s Sum

1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \hdots = \frac{\pi^2}{6}

Say what? This one blew my mind when I first encountered it. But it turns out Euler was the one who came up with it and it’s proof is just beautiful!

Say you have a quadratic equation f(x) whose roots are r_1,r_2 , then you can write f(x) as follows:

f(x) = x^2 - (r_1 + r_2) x + r_1r_2

You can also divide throughout by r_1r_2 and arrive at this form:

f(x) = r_1r_2 \left( \frac{x^2}{r_1r_2} - (\frac{1}{r_1} + \frac{1}{r_2}) x + 1 \right)

As for as this proof is concerned we are only worried about the coefficient of x, which you can prove that for a n-degree polynomial is:

a_1 = - (\frac{1}{r_1} + \frac{1}{r_2} + \hdots + + \frac{1}{r_n})

where r_1,r_2 \hdots r_n are the n-roots of the polynomial.


Now begins the proof

It was known to Euler that

f(y) = \frac{sin(\sqrt{y})}{\sqrt{y}} = 1 - \frac{1}{3!}y + \hdots

But this could also be written in terms of the roots of the equation as:

f(y) = \frac{sin(\sqrt{y})}{\sqrt{y}} = 1 - (\frac{1}{r_1} + \frac{1}{r_2} + \hdots + + \frac{1}{r_n})y + \hdots

Now what are the roots of f(y) ?. Well, f(y) = 0 when \sqrt{y} = n \pi i.e y = n^2 \pi^2 *

The roots of the equation are y = \pi^2, 4 \pi^2, 9 \pi^2, \hdots


f(y) = \frac{sin(\sqrt{y})}{\sqrt{y}} = 1 - \frac{1}{3!}y + \hdots = 1 -( \frac{1}{\pi^2} + \frac{1}{4 \pi^2} + \hdots )y + \hdots

Equating the coefficient of y on both sides of the equation we get that:

\frac{1}{6} = \frac{1}{\pi^2} + \frac{1}{4 \pi^2} + \frac{1}{ 9 \pi^2} + \hdots

\frac{\pi^2}{6} = 1 + \frac{1}{4} + \frac{1}{9} + \hdots = S_2


* n=0 is not a root since
\frac{sin(\sqrt{y})}{\sqrt{y}} = 1 at y = 0