How to photograph shock waves ?


This week NASA released the first-ever image of shock waves interacting between two supersonic aircraft. It’s a stunning effort, requiring a cutting-edge version of a century-old photographic technique and perfect coordination between three airplanes – the two supersonic Air Force T-38s and the NASA B-200 King Air that captured the image. The T-38s are flying in formation, roughly 30 ft apart, and the interaction of their shock waves is distinctly visible. The otherwise straight lines curve sharply near their intersections. 

Fully capturing this kind of behavior in ground-based tests or in computer simulation is incredibly difficult, and engineers will no doubt be studying and comparing every one of these images with those smaller-scale counterparts. NASA developed this system as part of their ongoing project for commercial supersonic technologies. (Image credit: NASA Armstrong; submitted by multiple readers)

How do these images get captured?

It may not obvious as to how this image was generated because if you have heard about Schlieren imaging what you have in your head is a setup that looks something like:


But how does Schelerin photography scale up to capturing moving objects in the sky?

Heat Haze

When viewing objects through the exhaust gases emanating from the nozzle of aircrafts, one can observe the image to be distorted.


Hot air is less dense than cold air.

And this creates a gradient in the refractive index of the air

Light gets bent/distorted


Method-01 : BOSCO ( Background-Oriented Schlieren using Celestial Objects )

You make the aircraft whose shock-wave that you would like to analyze pass across the sun in the sky.

You place a hydrogen alpha filter on your ground based telescope and observe this:


                  Notice the ripples that pass through the sunspots

The different air density caused by the aircraft bends the specific wavelength of light from the sun. This allows us to see the density gradient like the case of our heat wave above.

We can now calculate how far each “speckle” on the sun moved, and that gives us the following Schlieren image.

Method-02: Airborne Background Oriented Schlieren Technique

In the previous technique how far each speckle of the sun moved was used for imaging. BUT you can also use any textured background pattern in general.

An aircraft with camera flies above the flight like so:


The patterned ground now plays the role of the sun. Some versions of textures that are commonly are:


The difficulty in this method is the Image processing that follows after the images have been taken. 

And one of the main reasons why the image that NASA has released is spectacular because NASA seems to have nailed the underlying processing involved.

Have a great day!

* More on Heat hazes

** More on BOSCO

*** Images from the following paper : Airborne Application of the Background Oriented Schlieren Technique to a Helicopter in Forward Flight

**** This post obviously oversimplifies the technique. A lot of research goes into the processing of these images. But the motive of the post was to give you an idea of the method used to capture the image, the underlying science goes much deeper than this post.

A note on the Hydrogen spectrum

The emission spectrum of atomic hydrogen is given by this amazing spectral series diagram:


Let’s take a closer look at only the visible portion of the spectrum i.e the Balmer series.


If a hydrogen lamp and a diffraction grating just happen to be with you, you can take a look at the hydrogen lamp through the diffraction grating, these lines are what you would see:



These are known emission lines and they occur when the hydrogen atoms in the lamp return to a state of lower energy from an excited energy state.


           Representation of emission and absorption using the Bohr’s model

Here’s another scenario that could also happen:


You have a bright source of light with a continuous spectrum and in between the source and the screen, you introduce a gas (here, sodium)


Source: Harvard Natural sciences

The gas absorbs light at particular frequencies and therefore we get dark lines in the spectrum.

This is known as absorption line. The following diagram summarizes what was told thus-far in a single image:


The absorption and emission spectrum for hydrogen look like so :


Stars and Hydrogen

One of the comments from the previous post was to show raw spectrum data of what was being presented to get a better visual aid.

Therefore,the following spectrum is a spectrum of a star taken from the Sloan Digital Sky Survey (SDSS)


                                 Plot of wavelength vs median-flux

Here’s the spectrum with all the absorption lines labelled:


Source: SDSS

You can clearly see the Balmer series of hydrogen beautifully encoded in this spectrum that was taken from a star that is light-years away.

And astronomers learn to grow and love these lines and identify them immediately in any spectrum, for they give you crucial information about the nature of the star, its age, its composition and so much more.


Source: xkcd

Have a great day!

*If you squint your eyes a bit more you can find other absorption lines from other atoms embedded in the spectrum as well.

Mars: Red Planet, Blue sunset?

Mars has always been an interesting planet to us earthlings. The possibility of life, rovers leaving no stone unturned(literally), it’s demanding reddish appearance and now those breathtaking sunsets.Mesmerizing isn’t it ? But,

Why are martian sunsets blue?


Here on earth, sunsets are bright with Yellow, Orange and Red colors dazzling in the sky. During sunsets, the light from the sun has to travel a longer distance in our atmosphere to reach the earth.

Consequently, all the blue and violet light is scattered( thrown in various directions) by the particles in our atmosphere leaving behind only shades of yellow, orange and red, which is what you see. This phenomenon is known as Rayleigh scattering.


On mars, the reverse effect occurs. The martian dust is smaller and more abundant than on earth and it incidentally happens to be just the right size that it absorbs the blue light whilst scattering the red ones across the sky. This makes martian sunsets blue :).

Stay tuned, there is more space stuff coming your way.

( Source: