Feynman’s trick applied to Contour Integration

A friend of mine was the TA for a graduate level  Math course for Physicists. And an exercise in that course was to solve  integrals using Contour Integration. Just for fun, I decided to mess with him by trying to solve all the contour integral problems in the prescribed textbook for the course [Arfken and Weber’s  ‘Mathematical methods for Physicists,7th edition”  exercise (11.8)] using anything BUT contour integration.

You can solve a lot of them them exclusively by using Feynman’s trick. ( If you would like to know about what the trick is – here is an introductory post) The following are my solutions:

All solutions in one pdf

Arfken-11.8.1

Arfken-11.8.2

Arfken-11.8.3

Arfken-11.8.4*

Arfken-11.8.5

Arfken-11.8.6 & 7 – not applicable

Arfken-11.8.8

Arfken-11.8.9

Arfken-11.8.10

Arfken-11.8.11

Arfken-11.8.12

Arfken-11.8.13

Arfken-11.8.14

Arfken-11.8.15

Arfken-11.8.16

Arfken-11.8.17

Arfken-11.8.18

Arfken-11.8.19

Arfken-11.8.20

Arfken-11.8.21 & Arfken-11.8.23* (Hint: Use 11.8.3)

Arfken-11.8.22

Arfken-11.8.24

Arfken-11.8.25*

Arfken-11.8.26

Arfken-11.8.27

Arfken-11.8.28

*I forgot how to solve these 4 problems without using Contour Integration. But I will update them when I remember how to do them. If you would like, you can take these to be challenge problems and if you solve them before I do send an email to 153armstrong(at)gmail.com and I will link the solution to your page. Cheers!

Advertisement

Beautiful Proofs(#3): Area under a sine curve !

So, I read this post on the the area of the sine curve some time ago and in the bottom was this equally amazing comment :

Screenshot from 2017-06-07 00:19:11

\sum sin(\theta)d\theta =   Diameter of the circle/ The distance covered along the x axis starting from 0 and ending up at \pi.

And therefore by the same logic, it is extremely intuitive to see why:

\int\limits_{0}^{2\pi} sin/cos(x) dx = 0

Because if a dude starts at 0 and ends at 0/ 2\pi/ 4\pi \hdots, the effective distance that he covers is 0.

Circle_cos_sin.gif

If you still have trouble understanding, follow the blue point in the above gif and hopefully things become clearer.