Fibonacci sequence in the hiding

Daily-Life-Math-Facts-2

What ?!! There exists such an elegant decimal representation of the Fibonacci sequence? Well yes! and the only thing that you need to know to prove this is that if the Fibonacci numbers were the coefficients to a power series expansion, then the Fibonacci generating function is given as follows:

1x + 1x^{2} + 2x^{3} + 3x^{4} + 5x^{5} + \hdots = \frac{x}{1-x-x^{2}}

Subsituting the value of x  = \frac{1}{10} , we get :

\frac{1}{10} + \frac{1}{10}^{2} + 2(\frac{1}{10})^{3} + 3(\frac{1}{10})^{4} + 5(\frac{1}{10})^{5} + \hdots = \frac{\frac{1}{10}}{1-\frac{1}{10}-\frac{1}{10}^{2}}

0.1 + 0.01 + 0.002 + 0.0003 + 0.00005 + \hdots = \frac{10}{89}  

0.01 + 0.001 + 0.0002 + 0.00003 + 0.000005 + \hdots = \frac{1}{89}  

Proved. 😀

 

 

Advertisements

Beautiful Proofs(#3): Area under a sine curve !

So, I read this post on the the area of the sine curve some time ago and in the bottom was this equally amazing comment :

Screenshot from 2017-06-07 00:19:11

\sum sin(\theta)d\theta =   Diameter of the circle/ The distance covered along the x axis starting from 0 and ending up at \pi.

And therefore by the same logic, it is extremely intuitive to see why:

\int\limits_{0}^{2\pi} sin/cos(x) dx = 0

Because if a dude starts at 0 and ends at 0/ 2\pi/ 4\pi \hdots, the effective distance that he covers is 0.

Circle_cos_sin.gif

If you still have trouble understanding, follow the blue point in the above gif and hopefully things become clearer.