# Jackson’s Laplacian in spherical Coordinates

If you took a look at one of the previous posts on how to remember the Laplacian in different forms by using a metric,  you will notice that the form of  the Laplacian that we get is: $\nabla^2 \psi = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left( sin(\theta) \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 \psi}{\partial \phi^2}$

But in Jackson’s Classical Electrodynamics, III edition he notes the following: This is an interesting form of the Laplacian that perhaps not everyone has encountered. This can obtained from the known form by making the substitution $u = r \psi$ and simplifying. The steps to which have been outlined below:  # Feynman’s trick applied to Contour Integration

A friend of mine was the TA for a graduate level  Math course for Physicists. And an exercise in that course was to solve  integrals using Contour Integration. Just for fun, I decided to mess with him by trying to solve all the contour integral problems in the prescribed textbook for the course [Arfken and Weber’s  ‘Mathematical methods for Physicists,7th edition”  exercise (11.8)] using anything BUT contour integration.

You can solve a lot of them them exclusively by using Feynman’s trick. ( If you would like to know about what the trick is – here is an introductory post) The following are my solutions:

All solutions in one pdf

Arfken-11.8.1

Arfken-11.8.2

Arfken-11.8.3

Arfken-11.8.4*

Arfken-11.8.5

Arfken-11.8.6 & 7 – not applicable

Arfken-11.8.8

Arfken-11.8.9

Arfken-11.8.10

Arfken-11.8.11

Arfken-11.8.12

Arfken-11.8.13

Arfken-11.8.14

Arfken-11.8.15

Arfken-11.8.16

Arfken-11.8.17

Arfken-11.8.18

Arfken-11.8.19

Arfken-11.8.20

Arfken-11.8.21 & Arfken-11.8.23* (Hint: Use 11.8.3)

Arfken-11.8.22

Arfken-11.8.24

Arfken-11.8.25*

Arfken-11.8.26

Arfken-11.8.27

Arfken-11.8.28

*I forgot how to solve these 4 problems without using Contour Integration. But I will update them when I remember how to do them. If you would like, you can take these to be challenge problems and if you solve them before I do send an email to 153armstrong(at)gmail.com and I will link the solution to your page. Cheers!

# Using Complex numbers in Classical Mechanics

When one is solving problems on the two dimensional plane and you are using polar coordinates, it is always a challenge to remember what the velocity/acceleration in the radial and angular directions ( $v_r , v_{\theta}, a_r, a_{\theta}$) are. Here’s one failsafe way using complex numbers that made things really easy : $z = re^{i \theta}$ $\dot{z} = \dot{r}e^{i \theta} + ir\dot{\theta}e^{i \theta} = (\dot{r} + ir\dot{\theta} ) e^{i \theta}$

From the above expression, we can obtain $v_r = \dot{r}$ and $v_{\theta} = r\dot{\theta}$ $\ddot{z} = (\ddot{r} + ir\ddot{\theta} + i\dot{r}\dot{\theta} ) e^{i \theta} + (\dot{r} + ir\dot{\theta} )i \dot{\theta} e^{i \theta}$ $\ddot{z} = (\ddot{r} + ir\ddot{\theta} + i\dot{r}\dot{\theta} + i \dot{r} \dot{\theta} - r\dot{\theta}\dot{\theta} )e^{i \theta}$ $\ddot{z} = (\ddot{r} - r(\dot{\theta})^2+ i(r\ddot{\theta} + 2\dot{r}\dot{\theta} ) )e^{i \theta}$

From this we can obtain $a_r = \ddot{r} - r(\dot{\theta})^2$ and $a_{\theta} = (r\ddot{\theta} + 2\dot{r}\dot{\theta})$ with absolute ease.

Something that I realized only after a mechanics course in college was done and dusted but nevertheless a really cool and interesting place where complex numbers come in handy!